Electrocatalytic Formation of Superoxides in the Presence of Cobalt Chelates

By ANNA PUXEDDU, NAZARIO MARSICH, and GIACOMO COSTA* (Istituto di Chimica, Universita, 34127 Trieste, Italy)

Summary Controlled potential reduction of the NN - ethylenebis(salicylideneaminato)dipyridinecobalt(III) cation in pyridine in the presence of lithium perchlorate and oxygen leads to the electrocatalytic formation of LiO_2 .

INVESTIGATION of the electrochemical reduction of molecular oxygen in the presence of transition metal compounds is relevant to an understanding of catalytic oxygen reduction in biological and non-biological systems. The increase in reactivity of the oxygen molecule is attributed to coordination to the metal and formation of oxygen adducts as intermediates.¹ Electrochemical reduction of dioxygen in aprotic solvents in the presence of oxygen carrier cobalt chelates has been shown to occur at less negative potentials compared with the non-co-ordinated molecule.² We now report that the electrochemical one-electron reduction of dioxygen occurs catalytically, in the presence of cobalt chelates and Li⁺ in pyridine (py), with formation of lithium superoxide. NN'-Ethylenebis(salicylideneaminato)cobalt-(II), $[Co^{II}(salen)]^{\circ}$, and the corresponding Co^{III} chelate [Co^{III}(salen)(py)₂]⁺ in deoxygenated pyridine solution containing $(NEt_4)ClO_4$ (0.1 mol dm⁻³) as supporting

electrolyte show respectively, diffusion controlled reversible polarographic anodic and cathodic waves with half-wave potential $E_{\frac{1}{2}} - 0.54$ V vs. S.C.E. When LiClO₄ is used as supporting electrolyte the only difference in the polarographic behaviour is a shift of $E_{\frac{1}{2}}$ to -0.2 V vs. S.C.E. (Figure, A and B).

The displacement of the $E_{\frac{1}{2}}$ value is attributed to the electrostatic interaction between the oxygen atoms of the ligand in the cobalt chelates and Li⁺, which increases the electron affinity of the cobalt atom, as already reported for the reduction of several Co^{II} chelates.³

In O₂-containing solutions of $[Co^{II}(salen)]^{\circ}$ (0.5 × 10⁻³ mol dm⁻³) and $(NEt_4)ClO_4$ (0·1 mol dm⁻³) the adduct $[Co^{II}(salen)(O_2)]^\circ$ is present and two polarographic waves are observed: the anodic wave is due to the oxidation of the [Co^{II}(salen)]° and the cathodic wave to the reduction of co-ordinated oxygen² ($E_{\frac{1}{2}} - 0.87$ V vs. S.C.E.) (Figure, C).

When $LiClO_4$ is used as supporting electrolyte under the same conditions the diffusion-controlled anodic wave is replaced by a catalytic cathodic wave (Figure, D) at potentials corresponding to the $E_{\frac{1}{2}}$ of the Co¹¹–Co¹¹¹ couple. The latter potential is significantly more positive than that of non-co-ordinated oxygen in the same solvent and with the same supporting electrolyte. This wave is attributed to the catalytic one-electron reduction of [Co^{III}(salen)(py)₂]⁺ which is formed from $[Co^{II}(salen)(O_2)]^\circ$ in the presence of Li⁺.

In fact by bubbling N₂ through $[Co^{II}(salen)(O_2)]^{\circ}$ solutions containing $[NEt_4][ClO_4]$ the $[Co^{II}(salen)]^\circ$ is regenerated as shown by an anodic wave with $E_{\frac{1}{2}} - 0.54$ V vs. S.C.E. In the presence of LiClO₄ the formation of $[Co^{III}(salen)(py)_2]^+$ is proved by a cathodic wave with $E_{\frac{1}{2}}$ -0.20 V vs. S.C.E. Electrolysis in an oxygen-saturated solution of $[Co^{III}(salen)(py)_2]^+$ at -0.27 V vs. S.C.E. in the presence of Li⁺ gave rise to a yellowish precipitate of LiO₂

at the Hg cathode. LiO₂ was identified by the 'nitroblue tetrazolium' test.⁴ Treatment with water led to disproportionation and formation of H_2O_2 .

From the above results the catalytic mechanism in reactions (1)—(3) is proposed. The overall reaction is the

$$[\text{CoIII}(\text{salen})]^+ \xrightarrow[\text{Oalpha}]{} [\text{CoIII}(\text{salen})(\text{O}_2)]$$
(1)

$$[\operatorname{Co}^{II}(\operatorname{salen})(\mathcal{O}_2)] \longleftrightarrow [\operatorname{Co}^{III}(\operatorname{salen})(\mathcal{O}_2)^-]$$
(2)

$$[\text{Co^{III}(salen)(O_2)^-}] + M^+ \rightleftharpoons [\text{Co^{III}(salen)(O_2...M)^+}] \rightarrow [\text{Co^{III}(salen)}]^+ + MO_2$$
(3)

one-electron reduction of O₂ to lithium superoxide and the catalytic process is the electrochemical reduction of the Co^{III} chelate regenerating as oxygen carrier the Co^{II} chelate. The essential step of the catalytic mechanism is ion pair formation and transfer of O_2^- from cobalt to lithium within the ion pair. Formation of an oxygen adduct from electrogenerated O_2^- in dimethylformamide and a cobalt(III) chelate (aquocobalamin) has also been observed.⁵

The stabilization of O_2^- by formation of LiO_2 may also explain the inhibition of the metal-dependent catalysis of Bu₃P oxidation by bis(acetylacetonato)cobalt(II) which was observed when Li⁺ is added to the system.⁶

(Received, 3rd August 1977; Com. 806.)

- ¹ H. Alt, H. Binder, W. Lindner, and G. Sandstade, Electroanalyt. Chem. Interfacial Electrochem., 1971, 31, App. 19-22.
- ² G. Costa, A. Puxeddu, and L. Nardin Stefani, Inorg. Nucl. Chem. Letters, 1970, 6, 191.
 ³ E. Reisenhofer and G. Costa, J.C.S. Dalton, 1976, 521.
 ⁴ J. S. Valentine and A. B. Curtis, J. Amer. Chem. Soc., 1975, 97, 224.
 ⁵ R. P. Hanzlik and D. Williamson, J. Amer. Chem. Soc., 1976, 98, 6570.
 ⁶ I. Ellis, I. M. Pratt, and M. Green, J.C.S. Chem. Comm., 1973, 781.